
USER’S
MANUAL

Part 4:
The aiNet DLL Library

The aiNet DLL Library

Introduction

A lot of people around the World who are using aiNet, expressed their need for an additional
tool, which would give them an opportunity to customise the aiNet neural network algorithm
according to their specific needs. We have considered several different methods to make the
algorithm available to meet our customer needs and finally we decided to provide one solution in
two slightly different forms. Basically, the solution is a library of functions, which may be called
from within a customer’s application. The first form of this solution is a library of C functions
encapsulated in a DLL library. The second form is a library of C++ classes which will be made
available in future releases of aiNet. This solution is simple, compact, adaptable and efficient.
We also found that people who required the additional tools tended to be knowledgeable about
computer programming and therefore the libraries could be put to immediate use.

The C library is limited to the prediction functions only. The C++ library will consist of the full
set of methods and classes which are used in aiNet.

Notes about 16 and 32 bit versions of aiNet DLL

The aiNet DLL library comes in two forms: as a 16 bit DLL and as a 32 bit DLL, named as
AINET16.DLL and AINET32.DLL, respectively. If your compiler can produce 32 bit code, than
we recommend that you to use the 32 bit library, since the 32 bit code runs significantly faster.

How to use the aiNet DLL library

The aiNet DLL library is intended to be used together with aiNet. The global problem analysis
and modelling should be done with aiNet, as described in previous sections of the manual. When
a good model is found, the user may then write his/her own application which will be based on
the resulting model. The library is given as a DLL (dynamic link library) hence any computer
language which can call functions in a DLL may be used. Examples using C and Visual Basic are
provided.

aiNet: The aiNet DLL Library 1

Figure 4.1: How to use the aiNet DLL library

Of course, you may develop your own strategies for using the aiNet DLL.

aiNet DLL functions overview

We have already told that the aiNet DLL library is limited to the prediction task only. These
functions should be used in similar fashion to the aiNet application after successful modelling
has been completed. The flowchart of actions in the prediction process is shown in Figure 4.2.

Figure 4.2: Flowchart of typical usage of the aiNet DLL functions

2 aiNet: The aiNet DLL Library

Let us assume that we found a good model with aiNet and now we would like to write an
application which will calculate predictions based on the model. We will also assume that we are
using C and a compiler which can link Windows based DLLs.

The major steps in the process may be seen from the flowchart and there follows a brief
explanation.

First we should allocate memory for the model. The aiCreateModel function is used for this
purpose. Than data is loaded into the model either directly in the computer code, or simply by
reading a CSV model file produced by aiNet. To use a CSV file, use the
aiCreateModelFromCSVFile instead aiCreateModel function. Once the model is defined, it may
be normalized using the aiNormalize function. Everything is now ready for the prediction to take
place. The prediction process is run with the aiPrediction function. The prediction may be run
repeatedly. When all predictions are complete, it is good practice to denormalize the model,
although this is not necessary. aiDenormalize function completes this task. Finally, if memory
for the model was allocated dynamically, it should be freed using the aiDeleteModel function.

aiNet DLL Library and C (C++) compilers

The best way to see how to use the aiNet DLL with a C compiler, is to look at the examples in
the \AINET\DLL\C directory. There three examples. All these perform the same task, but in
different ways. Study these simple examples and also look at The aiNet DLL Library Reference
chapter for more details about each aiXX function used in examples.

Note, although the examples are functionally very similar they produce different results. This is
not en error, because each example uses different normalization and penalty settings.

To build examples correctly, AINETXX.LIB needs to be added to the project files. This is a
virtual library which holds function signatures needed to link the aiNet DLL library correctly.
For 32 bit applications, it is suggested that AINET32.LIB is used. For 16 bit applications,
AINET16.LIB must be used. Please see your compiler documentation for more specific details.

Here is an example of project file for Borland C(++), version 4.5

Figure 4.3: Sample of project file for BC++ 4.5

Troubleshooting: If the example will not compile, then verify that the header file AINETDLL.H
is included in the project search path. This file may be found in the..AINET\DLL directory.
Check also that proper LIB files are added to the project file. Finally, ensure that the correct DLL
files are either in the working directory, in the search path, or in WINDOWS\SYSTEM directory.

AINETXX.DLL files will be found will be found in several aiNet subdirectories. Only one is
required in the WINDOWS\SYSTEM directory. The others may be deleted.

aiNet: The aiNet DLL Library 3

aiNet DLL Library and Visual Basic

Before using aiNet with Visual Basic, it is recommend that the example projects located
in ..AINET\DLL\VB directory are examined. There are two sub-directories named TEST1 and
TEST2. Also refer to ‘The aiNet DLL Library Reference’ chapter, for more details about each
aiXX function used in the examples.

The description in The aiNet DLL Library Reference uses the C language syntax. If you are not
familiar with it, then the following table may be useful. This table shows the conversion of some
variable types from C to Visual Basic. In AINET.BAS, all of the function calls are converted to
Visual Basic form. Please, refer to the Visual Basic documentation for more details.

C Visual Basic Comment

int Integer

BOOL Integer

float Single

long Long

aiModel* Long VB does not recognise pointers. A pointer is converted in
aiModel to a Long variable which are both 32 bit long.

aiModel Not accessible in Visual Basic

Table 4.1: C to Visual Basic variable type conversion

To build you applications properly, AINET.BAS must be included in the make (project) files.
This file holds all of signatures of an aiNet DLL function and enables calling of the aiNet DLL
library. AINET16.DLL must be either in your working directory, on the search path or in
WINDOWS\SYSTEM directory.

AINET16.DLL exists in several AINET subdirectories. It is suggested that a single copy is
placed in the WINDOWS\SYSTEM directory and the others deleted.

The aiNet DLL Library Reference
This chapter shows how aiNet DLL functions used. Function calls are explained, together with
function arguments, return values and error conditions.

The aiModel structure

Before looking at individual functions, it is advisable to examine the structure of aiModel. This
structure encapsulates all the variables which are needed for the prediction: it holds the model
data and also has some working variables.

There is an important difference between the model organisation in the aiNet application and
model organisation in the aiNet DLL. The aiNet DLL will not compute "excluded" variables.
Individual variables may not be switched from input to output and vice versa as may be done
with the aiNet application. The input and output variables in the aiNet DLL can not be mixed in
any order. Input variables come first and the output variables follow. These "drawbacks" are
rewarded by greater simplicity and calculation speed, since no extra mapping is needed.

4 aiNet: The aiNet DLL Library

Definition
The aiModel structure is defined by:

typedef struct aiTagModel{
 float **data; /* model (vector of model vectors) */
 int nMV; /* number of model vectors */
 int nVar; /* total number of variables */
 int ni; /* number of input variables */
 int* discrete; /* array of flags for discrete variables */
 aiVector n1; /* noramlization / denormalization */
 aiVector n2; /* ... */

NEW int capacity; /* data array size */
NEW unsigned char flag; /* tells if model vector is excluded */

} aiModel;

There is no need to directly access any of the variables in the aiModel structure - the functions do
that, but here is an explanation of the purposes of individual variables.

float **data is a pointer to pointers (a vector of vectors). It holds the model vector data. It is
actually an array of size at least nMV (number of model vectors) by exactly nVar (number of
variables). The data in the data field can be accessed using aiGetVariable and aiSetVariable.
NOTE: The data variable works in conjunction with the capacity variable.

int nMV returns the number model vectors that may be stored in the model. This variable must be
set to (it may be set indirectly by the function aiCreateModel) exactly the number of model
vectors that are required. If more model vectors are specified than the actual number of model
vectors, an error condition may result.

int nVar returns the total number of variables in the model. As previously mentioned, the aiNet
DLL does not support excluded variables.

int ni returns the number of input variables in the model. It is used as a differentiator between the
input and output variables. Variables in a model vector which have smaller C1 index than is value
of ni are treated as input variables and variables which have C index greater or equal to value of
ni are treated as output variables.

int *discrete is an array of size nVar. This discrete array indicates if a variable with index i is a
discrete variable. In this case where the variable i is discrete, the array must be set to a non-zero
value. Remember, only input variables can have a discrete attribute; this attribute is ignored for
output variables.

float* n1, n2 are internally used working arrays and they are not important for understanding the
aiNet DLL.

NEW int capacity is an integer used for internal bookkeeping of the current length of data variable.
This new variable enables that new model vectors can be added and removed dynamically using

1 C here stands for C programming language. C index means an index which starts counting at zero
element - as it is done in C programming language

aiNet: The aiNet DLL Library 5

a couple of new functions: aiSetCapacity, aiGetCapacity, aiGetFreeEntries,
aiInsertModelVector, aiOverwriteModelVector, aiAppendModelVector, aiDeleteModelVector.
The capacity variable works in conjunction with the data variable. Initially the array size
(capacity) equals to nMV. This can be later changed by using aiSetCapacity function. If the
capacity is greater than nMV, then pointers to model vectors beyond nMV are set to NULL (they
point to nothing). This is very useful, if new model vectors will be added to the model later,
dynamically. Totally (capacity – nMV) model vectors can be added later. If capacity equals
to nMV, no new model vectors can be added. Capacity will never be smaller than nMV. If we
force the capacity to a smaller value than the current nMV, all model vectors between capacity
and nMV will be deleted in order to obtain nMV = capacity.

NEW unsigned char* flag is an array of unsigned chars. The array size is maintained internally and has
always the same size as the data variable. The flag array is used to exclude individual model
vectors from the prediction process. This can be very useful in time series analysis where model
vectors are sorted according to their time stamp. The flag variable is manipulated by
aiExcludeModelVector, aiExcludeModelVectorRange and aiIsModelVectorExcluded functions.

aiVector

Besides the aiModel structure there is also one definition (typedef) which is used in the aiNet
DLL. Here it is it’s C definition:

typedef float* aiVector;

It is a pointer to an array of floats, which may be treated as a vector.

aiCreateModel

Syntax
aiModel* aiCreateModel(int nModelVectors, int nVariables, int nInpVariables)

Description
This function creates an aiModel structure and allocates memory for it’s working variables. It
allocates as much memory as is required to hold nMV model vectors, where each vector has nVar
variables. All working variables and flags of the aiModel structure are also initialised. The
number of variables or number of model vectors may not be changed after this function call has
been made. The aiModel structure created by this function should be always freed using the
function aiDeleteModel, so that all allocated memory is properly returned to the system.

Arguments
int nModelVectors is number of model vectors that will be put into the model. This argument
determines the value of the nMV variable in the aiModel structure. The value of nMV variable
should not be changed after this function has been called.

6 aiNet: The aiNet DLL Library

int nVariables is the total number of variables in the model (input and output). The variable nVar
in the aiModel structure is set to the value held by argument nVariables. The value of nVar
should not be changed after this function has been called.

int nInpVariables is the number of input variables used in the model. The variable ni in the
aiModel structure will be set to the value held by nInpVariables.

Return value
The function returns a pointer to the structure aiModel. If anything goes wrong during model
creation, the function frees all of the allocated memory and returns NULL pointer indicating an
error condition.

See also
aiModel, aiDeleteModel, aiCreateModelFromCSVFile

aiCreateModelFromCSVFile

Syntax
aiModel* aiCreateModelFromCSVFile(const char* fileName)

Description
This function creates a model on the basis of a CSV file. The CSV file should be created using
aiNet. The function first checks how many model vectors and variables are in the CSV. This is
done using the aiGetCSVFileModelSize function. The function then sorts the variables according
their status. Input variables are mapped to the left, output variables to the right and excluded
variables are deleted. This means that if there are excluded variables in the CSV file, the final
number of variables in the model will be reduced by the number of excluded variables in the file.

Example: The following model was created using aiNet:

Variable name Result1 A B C Result2 D

Status Output Input Excluded Excluded Output Input

Discrete No Yes No No No No

1 100 20 15 -10 70 5

...

nMV 30 25 76 -23 44 3

By using the aiCreateModelFromCSVFile function the data is redefined as per the following
table:

aiNet: The aiNet DLL Library 7

Variable name A D Result1 Result2

Status Input Input Output Output

Discrete Yes No No No

1 20 5 100 70

...

nMV 25 3 30 44

Variables B and C are missing, because they were excluded. We can also notice that variable D
was shifted to left and Result1 was shifted to right. In the CSV file there were 6 variables and in
the model, created by the aiCreateModelFromCSVFile function, there are 4 variables.

The aiModel structure created by this function should be always freed using the aiDeleteModel
function, so that all of the allocated memory is properly returned to the system.

See aiNet User’s Guide, chapter 2.4: aiNet’s File Formats for a detailed CSV file format
explanation.

Arguments
const char* fileName points to a full path and file name of the CSV file used for model creation.

Return value
The function returns a pointer to structure aiModel. If anything goes wrong during model
creation the function frees all allocated memory and returns NULL pointer indicating an error
condition.

See also
aiModel, aiDeleteModel, aiCreateModel, aiGetCSVFileModelSize

aiDeleteModel

Syntax
int aiDeleteModel(aiModel* model)

Description
This function frees all memory which was allocated during aiCreateModel or
aiCreateModelFromCSVFile function call and returns the freed memory to the system. When the
aiDeleteModel function finishes, the structure model becomes invalid and any further reference to
this structure will result in an invalid pointer assignment error.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

8 aiNet: The aiNet DLL Library

Return value
The function returns AIERR_INVALID_POINTER if the model argument was bad. If successful,
then the function returns AIERR_NO_ERROR.

See also
aiModel, aiCreateModel, aiCreateModelFromCSVFile

aiNormalize

Syntax
int aiNormalize(aiModel model, int method)

Description
Before the aiPrediction function can be used on a model, the model must be normalized. Two
different methods of normalization may be used: regular and statistical. See the aiNet User’s
Guide - section 2.2.3 for more detailed explanation of these two methods.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or aiCreateModelFromCSVFile function.

int method defines which method to be used during the normalization process. Two different
methods of normalization may be used and they are denoted with following constants:

METHOD_REGULAR for regular normalization

METHOD_STATISTICAL for statistical normalization

Return value
On success, the aiNormalize function returns the AIERR_NO_ERROR constant (which equals to
zero). If an error has occurred, than the function returns a negative value. The following errors
can occur: AIERR_NO_IO_VARIABLES, AIERR_EMPTY_ROW,
AIERR_EMPTY_COLUMN, AIERR_EQUAL_COLUMN.

See also
aiModel, aiPrediction, aiDenormalize, list of error constants

aiDenormalize

Syntax
int aiDenormalize(aiModel model)

aiNet: The aiNet DLL Library 9

Description
The aiDenormalize function is an inverse function of the aiNormalize function. It initialises the
model. Because of the float (4 byte) precision, used in the aiNet model, minor rounding errors
may occur.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using
aiCreateModel or aiCreateModelFromCSVFile function.

Return value:
There are no errors produced during denormalization and therefore this function always returns
AIERR_NO_ERROR.

See also
aiModel, aiNormalize

aiRegistration

Syntax
int aiRegistration(const char* user, const char* code)

Description
By registering the aiNet DLL, a fixed User Name and User Code will be provided. See ‘All
About the Registration’ in the aiNet User’s Manual for further details. By using aiRegistration, it
will prevent the registration dialogue box from appearing.

Arguments
const char* user is a pointer to an array of characters which represents a registered user name.

const char* code is a pointer to an array of characters which represent a 10 character code string
which belongs to the user name.

Return value
The function returns non-zero if the registration was successful and zero if not.

aiPrediction

Syntax
int aiPrediction(aiModel model, aiVector toPredict, float penalty, int method)

Description
The aiPrediction function is at the heart of the aiNet DLL. It calculates a prediction based on the
model argument and on the input part of the toPredict argument. Of course, the penalty and
method arguments are also important. The prediction is calculated in an almost identical way as

10 aiNet: The aiNet DLL Library

is done in aiNet itself. The underlying algorithm is the same, differences come from different
coding used in C++ language and from the simpler representation of input and output variables in
the aiNet DLL. However, the results obtained using the DLL should be identical to those
obtained from aiNet. For the mathematical description of the algorithm see the Appendix.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using
aiCreateModel or aiCreateModelFromCSVFile function.

aiVector toPredict it is an array of floats. The input part (first model->ni variables) must be set to
values for which a prediction (last model->nVar-model->ni variables) is required. The size of
this array must be equal to (or larger than) the value in model->nVar variable. When the
aiPrediction function is finished and no errors have occurred, then the output part of the
toPredict vector (last model->nVar-model->ni variables) holds the prediction result.

float penalty holds the value of the penalty coefficient. This coefficient plays the major role in
the aiNet neural network algorithm. Other sections of the manual describes this in detail. See
aiNet User’s Guide and Basics About Modelling with the aiNet for more details.

int method selects the penalty method to be used. There are three different methods denoted by
following constants: METHOD_DYNAMIC, METHOD_STATIC and METHOD_NEAREST.
Note that each method requires a different optimal penalty coefficient value.

Return value
On success, the aiPrediction function returns the AIERR_NO_ERROR constant. If an error
occurs, the input and output part of the aiVector toPredict argument holds invalid values and
function returns with one of the following constants:

AIERR_PENALTY_TOO_SMALL, AIERR_PENALTY_ZERO,
AIERR_NO_IO_VARIABLES.

See also
aiPredictionEx, aiExcludeModelVector, aiExcludeModelVectorRange, aiModel, aiVector, list of
error constants

aiGetVariable

Syntax
float aiGetVariable(aiModel* model, int mv, int v)

Description
The aiGetVariable function is used to get individual values in the model at random positions.
The position is limited to the range [1 ... nMV] for the model vector index and to the range [1 ...
nVar] for the variable index. If the model was normalized before this function call, then the
returned value holds the normalized value.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

aiNet: The aiNet DLL Library 11

int mv is an index of a model vector in the model structure, where the variable required is located.
The first model vector has an index of 1. This means that the valid index range is within [1 ...
nMV] and not [0 ... nMV-1] as it would be in classic C-notation.

int v is the index of a variable in the selected model vector. The first variable has an index of 1,
meaning that the valid index range is [1 ... nVar].

Return value
The function returns the value at selected position., if the position is valid. If the position is
invalid, the function returns the -MAXFLOAT constant, which indicates an error condition.

Important note:
This function does not work well if it is called from a Visual Basic application. For Visual Basic
applications, an alternative function aiGetVariableVB, is provided.

See also
aiGetVariableVB, aiModel, aiSetVariable

aiGetVariableVB

Syntax
int aiGetVariableVB(aiModel* model, int mv, int v, float* value)

Description
The aiGetVariableVB function is used to get individual values in the model at random positions.
The position is limited to the range [1 ... nMV] for the model vector index and to the range [1 ...
nVar] for the variable index. If the model was normalized before this function call was made then
the returned value holds the normalized value.

Use this function with Visual Basic applications.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using
aiCreateModel or aiCreateModelFromCSVFile function.

int mv is an index of a model vector in the mode, where the variable required is located. The first
model vector has an index 1. This means that the valid index range is [1 ... nMV] and not [0 ...
nMV-1] as it would be in classic C-notation.

int v is an index of a variable in the selected model vector. The first variable has an index 1 and
this means that the valid index range is [1 ... nVar].

float value is a value which will be read from the selected position and passed back to the
variable in the calling function.

Return value
If the position is a valid, the function returns the AIERR_NO_ERROR constant. If the position is
invalid than the function returns the AIERR_INVALID_INDEX constant.

12 aiNet: The aiNet DLL Library

See also
aiModel, aiGetVariable, aiSetVariable

aiSetVariable

Syntax
int aiSetVariable(aiModel* model, int mv, int v, float value)

Description
The aiSetVariable function is used to setup the model before the model is normalized. It will set
the value in the value argument to the position selected by mv and v arguments. The position
must be in the range [1 ... nMV] for the model vector index and in the range [1 ... nVar] for the
variable index. If the position is invalid, the function ends and returns an error condition. Note
this function may be used at any time, but it will be invalid for normalized models.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

int mv is an index of a model vector in the model, where the variable required is located. The first
model vector has an index 1. This means that the valid index range is [1 ... nMV] and not [0 ...
nMV-1] as it would be in classic C-notation.

int v is index of a variable in the selected model vector. The first variable has an index 1 and this
means that the valid index range is [1 ... nVar].

float value is a value which will be set to the selected position.

Return value
If the position is valid, the function returns the AIERR_NO_ERROR constant. If the position is
invalid, then the function returns the AIERR_INVALID_INDEX constant.

See also
aiModel, aiGetVariable

aiGetCSVFileModelSize

Syntax
DWORD aiGetCSVFileModelSize(const char* fileName)

Description
This function opens the fileName CSV file and reads number of model vectors and number of
variables in the file. The result is packed into a DWORD (unsigned long).

See aiNet User’s Guide, chapter 2.4: aiNet’s File Formats for a detailed CSV file format
description.

aiNet: The aiNet DLL Library 13

Arguments
const char* fileName points to a full path and file name of the CSV file.

Return value
This function returns a DWORD. The DWORD is composed from two WORDs. The Hi WORD
holds number of model vectors and the low WORD holds number of variables. If an error occurs,
then the function returns either the AIERR_CSV_OPEN or the AIERR_CSV_READ constant.

The following code may be used to split the returned DWORD into two WORDs or ints:

int mv, var;
DWORD result = aiGetCSVFileModelSize(fileName);
if(((int)result) == AIERR_CSV_OPEN || ((int)result) == AIERR_CSV_READ)
 { report error here ... }
mv = (int)LOWORD(result);
var = (int)HIWORD(result);

aiGetVersion

Syntax
int aiGetVersion(void)

Description
The aiGetVersion function returns the version of the aiNet dynamic link library

Return value
The function returns an int which holds the major and minor version number of the aiNet DLL.
The return value is defined as: 100*major+minor.

Example:

The current version of the aiNet library is 1.20 - major version is 1 and minor version is 20. The
return value in this case is 100*1+20 = 120.

aiGetNumberOfVariables

Syntax
int aiGetNumberOfVariables(aiModel* model)

14 aiNet: The aiNet DLL Library

Description
This is a simple function which retrieves number of variables used in the model. The number of
variables in the model is set during the aiCreateModel function or during the
aiCreateModelFromCSVFile function call.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

ReturnValue
This is the number of variables in the model structure. If the pointer model was invalid then the
function returns the AIERR_INVALID_POINTER constant.

See also
aiModel, aiCreateModel, aiCreateModelFromCSVFile

aiGetNumberOfModelVectors

Syntax
int aiGetNumberOfModelVectors(aiModel* model)

Description
This function returns the number of model vectors used in the model. The number of model
vectors was set during the aiCreateModel function or during the aiCreateModelFromCSVFile
function call.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel function, or using the aiCreateModelFromCSVFile function.

ReturnValue
The function returns the number of model vectors in the model structure. If the pointer model was
invalid, then the function returns the AIERR_INVALID_POINTER constant.

See also
aiModel, aiCreateModel, aiCreateModelFromCSVFile

aiGetNumberOfInputVariables

Syntax
int aiGetNumberOfInputVariables(aiModel* model)

aiNet: The aiNet DLL Library 15

Description
This function returns the number of input variables used in the model. The number of input
variables is set by the aiCreateModel function or by the aiCreateModelFromCSVFile function
call.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

ReturnValue
The function returns number of input variables in the model structure. If the pointer model was
invalid, then the function returns the AIERR_INVALID_POINTER constant.

See also
aiModel, aiCreateModel, aiCreateModelFromCSVFile

aiSetDiscreteFlag

Syntax
int aiSetDiscreteFlag(aiModel* model, int v, BOOL f)

Description
The aiSetDicreteFlag function is used to set or clear flags in the discrete variable of the model.
See Basics About Modelling with the aiNet, Chapter 2 for details about variable types.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

int v is a field index of the discrete variable in the model. The valid range for this index is
[1...model->ni].

ReturnValue
The function returns one of the three possible constants: AIERR_NO_ERROR indicates a
success, AIERR_INVALID_INDEX and AIERR_INVALID_POINTER indicate failure.

See also
aiModel, aiGetDiscreteFlag

aiGetDiscreteFlag

Syntax
int aiGetDiscreteFlag(aiModel* model, int i)

16 aiNet: The aiNet DLL Library

Description
This function returns the discrete status of selected variable.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

int v is a field index of the discrete variable in the model. The valid range for this index is
[1...model->ni].

ReturnValue
On successful completion, the function returns zero if the variable v is not a discrete variable and
1 if the variable v is a discrete variable. In the event of error it returns either an
AIERR_INVALID_INDEX or an AIERR_INVALID_POINTER constant.

See also
aiModel, aiSetDiscreteFlag

aiSetCapacity NEW

Syntax
int aiSetCapacity(aiModel* model, int newCapacity)

Description
This function resizes the data and the flag fields of an aiModel structure. If the new capacity is
smaller than the current one, which means that the model will be reduced, than the redundant
model vectors will be deleted automatically. (model->capacity – newCapacity model
vectors will be deleted).

If the new capacity is greater than current one, new free entries will be added to the data field of
an aiModel structure. All new entries will point to NULL – to non-existing model vectors. By
ensuring new free entries, new model vectors can be added to the model using
aiInsertModelVector, aiOverwriteModelVector, aiAppendModelVector function.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

int newCapacity is a new value of the total numbers of model vectors that can be put in the
model.

ReturnValue
On successful completion, the function returns value of new capacity. In the event of error it
returns AIERR_MEMORY_ALLOCATION constant. NOTE: All error constants are negative
integers.

aiNet: The aiNet DLL Library 17

See also
aiModel, aiGetCapacity, aiGetFreeEntries

aiGetCapacity NEW

Syntax
int aiGetCapacity(aiModel* model)

Description
This function returns current size of the data array of an aiModel structure. NOTE: This does not
equal to number of model vectors nMV in the aiModel structure. If you would like to get number
of model vectors in the structure than you should use aiGetNumberOfModelVectors function.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

ReturnValue
On successful completion, the function returns current value the capacity field.

See also
aiModel, aiSetCapacity, aiGetFreeEntries

aiGetFreeEntries NEW

Syntax
int aiGetFreeEntries(aiModel* model)

Description
This function returns a number of model vectors that can be added to a model. The return value is
actually the difference between capacity and nMV. You can use this function to see how many
model vectors can you add to a model without changing the current capacity.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

ReturnValue
It returns a number of free entries – number of model vectors that can be added to a model at
current capacity.

See also
aiModel, aiSetCapacity, aiGetCapacity, aiGetNumberOfModelVectors

18 aiNet: The aiNet DLL Library

aiInsertModelVector NEW

Syntax
int aiInsertModelVector(aiModel* model, int index, aiVector newModelVector)

Description
This function inserts a new model vector to position defined by the index argument. The call to
this function can be successful only if there is at least one free entry left in a model. (The
capacity must be greater than nMV.) New model vector is inserted at index position – all model
vectors above the index position are shifted for one place toward end.

If index is greater than nMV and smaller or equal to capacity (index points to the NULL area),
than the new model vector is appended at the position next to the last valid model vector. The
actual index position is ignored – it is set internally to nMV+1.

If index refers beyond the capacity, the function returns AIERR_INVALID_INDEX.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

int index is a position where the new model vector shall be inserted. If index is greater than nMV,
than index is set to nMV+1 and nMV is incremented by one.

aiVector newModelVector is a vector (an array) of floats which represent model vector values
that will be copied to model at index position. The newModelVector argument must have at least
nVar elements. The caller is responsible to pass the correct size of newModelVector. If
newModelVector is NULL pointer, than a zero model vector will be inserted into a model - all
values will have value 0.

ReturnValue
On successful completion, the function returns a positive value – the actual position of inserted
model vector. On failure, it returns AIERR_NO_FREE_ENTRIES if there are no free entries left
or AIERR_MEMORY_ALLOCATION if memory for new model vector could not be allocated
or AIERR_INVALID_INDEX if index is invalid.

See also
aiGetFreeEntries, aiAppendModelVector, aiOverwriteModelVector, aiDeleteModelVector.

aiOverwriteModelVector NEW

Syntax
int aiOverwriteModelVector(aiModel* model, int index, aiVector newModelVector)

Description
This function overwrites an existing model vector at position defined by the index argument. If
index is greater than nMV (it points to an empty area) then model vector will be appended at the

aiNet: The aiNet DLL Library 19

first available position, which is exactly at nMV+1. The call to this function can be successful
only if index points to an existing model vector or if index points to a free area and there is at
least one free entry left in a model. (In the later case, capacity must be greater than nMV.)

If index refers beyond the capacity, the function returns AIERR_INVALID_INDEX.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

int index is a position where the new model vector shall overwrite the old one. If index is greater
than nMV, than index is set to nMV+1 and nMV is incremented by one.

aiVector newModelVector is a vector (an array) of floats which represent model vector values
that will overwrite an existing model vector at index position. The newModelVector argument
must have at least nVar elements. The caller is responsible to pass the correct size of
newModelVector. If newModelVector is NULL pointer, than a zero model vector will be inserted
into a model - all values will have value 0.

ReturnValue
On successful completion, the function returns a positive value – the actual position of inserted
model vector. On failure, it returns AIERR_NO_FREE_ENTRIES if there are no free entries left
or AIERR_MEMORY_ALLOCATION if memory for new model vector could not be allocated
or AIERR_INVALID_INDEX if index is invalid.

See also
aiGetFreeEntries, aiAppendModelVector, aiInsertModelVector, aiDeleteModelVector.

aiAppendModelVector NEW

Syntax
int aiAppendModelVector(aiModel* model, int index, aiVector newModelVector)

Description
This function appends the newModelVector at the first available position, which is exactly at
nMV+1. The call to this function can be successful only if there is at least one free entry left in a
model. (In the later case, capacity must be greater than nMV.) After the function completion,
nMV is incremented by one.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

aiVector newModelVector is a vector (an array) of floats which represent model vector values
that will overwrite an existing model vector at index position. The newModelVector argument
must have at least nVar elements. The caller is responsible to pass the correct size of
newModelVector. If newModelVector is NULL pointer, than a zero model vector will be inserted
into a model - all values will have value 0.

20 aiNet: The aiNet DLL Library

ReturnValue
On successful completion, the function returns a positive value – the actual position of inserted
model vector. On failure, it returns AIERR_NO_FREE_ENTRIES if there are no free entries left
or AIERR_MEMORY_ALLOCATION if memory for new model vector could not be allocated.

See also
aiGetFreeEntries, aiOverwriteModelVector, aiInsertModelVector, aiDeleteModelVector.

aiDeleteModelVector NEW

Syntax
int aiDeleteModelVector(aiModel* model, int index)

Description
This function deletes the model vector at the position defined by index argument. Here, index
must point to an existing model vector. The model vector is removed from the model and
memory allocated by this model vector is freed. All model vectors in the range of [index+1 …
nMV] are shifted by one place toward beginning. After the function completion, nMV is
decremented by one.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

int index points to a model vector which will be deleted and removed from the model. Index must
be a valid index - in the range [1…nMV].

ReturnValue
On successful completion, the function returns AIERR_NO_ERROR if function call was
successful. If index was not valid it returns AIERR_INVALID_INDEX

See also
aiAppendModelVector, aiInsertModelVector, aiOverwriteModelVector, aiExcludeModelVector,
aiExcludeModelVectorRange

aiPredictionEx NEW

Syntax
int aiPredictionEx(aiModel model, aiVector toPredict, float penalty, int method, int* list,

int listSize, BOOL mostInfluent)

Description
This function is an extension of the aiPrediction function. It has exactly the same behaviour as
the aiPrediction function. The aiPredictionEx function additionally returns the indexes of model

aiNet: The aiNet DLL Library 21

vectors in the model, which had the greatest (smallest) influence on the result of the prediction. In
many cases this can be very valuable information. The model vector indexes are stored in the list
argument, sorted by their influence. Theoretically, the list argument can have up to nMV
elements. When this is the case, list will hold indexes of all model vectors any you will be able to
judge every individual model vector. However, in this case prediction will take much more time
to finish the calculation since it has to maintain an internal sorted list of intermediate results -
which can be time consuming if there is a lot of model vectors in the model.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using
aiCreateModel or aiCreateModelFromCSVFile function.

aiVector toPredict it is an array of floats. The input part (first model->ni variables) must be set to
values for which a prediction (last model->nVar-model->ni variables) is required. The size of
this array must be equal to (or larger than) the value in model->nVar variable. When the
aiPrediction function is finished and no errors have occurred, then the output part of the
toPredict vector (last model->nVar-model->ni variables) holds the prediction result.

float penalty holds the value of the penalty coefficient. This coefficient plays the major role in
the aiNet neural network algorithm. Other sections of the manual describe this in detail. See
aiNet User’s Guide and Basics About Modelling with the aiNet for more details.

int method selects the penalty method to be used. There are three different methods denoted by
following constants: METHOD_DYNAMIC, METHOD_STATIC and METHOD_NEAREST.
Note that each method requires a different optimal penalty coefficient value.

int* list is an array of integers where indexes of model vectors that had the greatest influence on
the result of prediction are stored. Indexes in the list are sorted according to the influence. A
model vector at list[0] had the greatest influence, a model vector at list[1] had the second greatest
influence, etc.

int listSize tells how many indexes will be stored in the list argument by the aiPredictionEx
function. The user must take care that listSize does not exceed the maximal number of elements
that can be stored in the list argument.

BOOL mostInfluent tells how the elements in the list are sorted. If mostInfluent is TRUE then
most influent model vectors are stored in the list in their ascending order. If mostInfluent is
FALSE then least influent model vectors are stored in the list in their descending order.

Return value
On success, the aiPrediction function returns the AIERR_NO_ERROR constant. If an error
occurs, the input and output part of the aiVector toPredict argument holds invalid values and
function returns with one of the following constants:

AIERR_PENALTY_TOO_SMALL, AIERR_PENALTY_ZERO,
AIERR_NO_IO_VARIABLES.

See also
aiPrediction, aiExcludeModelVector, aiExcludeModelVectorRange, aiModel, aiVector, list of
error constants

22 aiNet: The aiNet DLL Library

aiExcludeModelVector NEW

Syntax
int aiExcludeModelVector(aiModel* model, int index, BOOL exclude)

Description
This function excludes/includes the model vector at the position defined by index argument.
Here, index must point to an existing model vector. The model vector is excluded from the model
if the exclude argument is TRUE (non-zero) and included back into the model if the exclude
argument is set to FALSE (zero). This function does not delete the model vector. Exclusion of
model vector effects only aiPrediction and aiPredictionEx functions. All excluded model vectors
are skipped in the prediction process. Initially - during model construction, all model vectors are
marked as included.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

int index points to a model vector which will be excluded/included from/in the model. Index must
be a valid index - in the range [1…nMV].

BOOL exclude is a flag which tells whether a model vector will be excluded or included. If
exclude is set to TRUE than model vector will be excluded. If exclude is set to FALSE than
model vector will be included.

ReturnValue
On successful completion, the function returns AIERR_NO_ERROR if function call was
successful. If index was not valid it returns AIERR_INVALID_INDEX

See also
aiExcludeModelVectorRange, aiDeleteModelVector

aiExcludeModelVectorRange NEW

Syntax
int aiExcludeModelVectorRange(aiModel* model, int start, int end, BOOL exclude)

Description
This function excludes/includes model vector in the range defined by the start and the end
argument. Selected range must be a sub-range of [1 … nMV]. The model vectors are excluded
from the model if the exclude argument is TRUE (non-zero) and included back into the model if
the exclude argument is set to FALSE (zero). This function does not delete the model vectors.
Exclusion of model vector effects only aiPrediction and aiPredictionEx functions. All excluded
model vectors are skipped in the prediction process. Initially - during model construction, all
model vectors are marked as included.

aiNet: The aiNet DLL Library 23

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

int start points to the first model vector in the range that will be excluded/included from/in the
model. start must be a valid index - in the range [1…nMV] and start must be smaller than end.

int end points to the last model vector in the range that will be excluded/included from/in the
model. end must be a valid index - in the range [1…nMV] and start must be smaller than end.

BOOL exclude is a flag which tells whether a model vector will be excluded or included. If
exclude is set to TRUE than model vector will be excluded. If exclude is set to FALSE than
model vector will be included.

ReturnValue
On successful completion, the function returns AIERR_NO_ERROR if function call was
successful. If index was not valid it returns AIERR_INVALID_INDEX

See also
aiExcludeModelVector, aiDeleteModelVector

aiIsModelVectorExcluded NEW

Syntax
BOOL aiIsModelVectorExcluded(aiModel* model, int index)

Description
This function tells whether a model vector selected by the index argument is excluded from the
model. The index argument must be a valid index in the range of [1…nMV].

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

int index points to the model vector of our interest. It must be in the range [1…nMV].

ReturnValue
It returns TRUE (1) if selected model vector is excluded from the model and FALSE (0) if model
vector is included in the model. On error - invalid index, the result is unpredictable.

See also
aiExcludeModelVector, aiExcludeModelVectorRange

24 aiNet: The aiNet DLL Library

aiSaveCSVFile NEW

Syntax
int aiSaveCSVFile(aiModel* model, const char* fileName)

Description
This function saves the current model to a file in a CSV format. This format is fully compatible
with the CSV format used by the aiNet application versions 1.24 and later. Prior version of the
aiNet application can not read files produced by this function. You should denormalize the model
before you call this function.

Arguments
aiModel* model is a pointer to an aiModel structure. This structure has to be created using the
aiCreateModel or the aiCreateModelFromCSVFile function.

const char* fileName is the name of the text file produced by this function. If file does not exist,
it will be created, if it already exists, it will be overwritten.

ReturnValue
On successful completion, the function returns AIERR_NO_ERROR.

See also
aiCreateModelFromCSVFile, aiDenormalize

List of error constants

Here is the complete list of error constants used in the aiNet DLL. All constants have a negative
value except AIERR_NO_ERROR constant which equals to zero and indicates that no errors
have occurred. Error constants are listed in following table:

Error Name Value Description
AIERR_NO_ERROR 0 Indicates OK - NO ERROR condition
AIERR_PENALTY_ZERO -1 Penalty coefficient was set to zero (or negative) value,

which is invalid.
AIERR_NO_IO_VARIABLES -2 There is no input or output variables in the model. At

least one input and one output is required.
AIERR_PENALTY_TOO_SMALL -3 The specified penalty coefficient was too small and

calculation of prediction was completed. Specify a
larger value.

AIERR_EMPTY_ROW -4 There is an empty row (model vector) in the model.
This is not allowed in the aiNet DLL. (It is allowed in
the aiNet application.)

AIERR_EMPTY_COLUMN -5 There is an empty column (variable) in the model. At
least two different values for a given variable must be

aiNet: The aiNet DLL Library 25

in the model.
AIERR_EQUAL_COLUMN -6 All values for a given variable are the same. There

must be at least two different values for a given
variable in the model.

AIERR_CSV_OPEN -7 A CSV file could not be opened.
AIERR_CSV_READ -8 A CSV file was opened successfully but an error

occurred during reading.
AIERR_MEMORY_ALLOCATION -9 Memory was not allocated properly or it was not

allocated at all.
AIERR_INVALID_POINTER -10 The specified pointer is invalid.
AIERR_INVALID_INDEX -11 Variable or model vector index is out of range.
AIERR_NO_FREE_ENTRY -12 There are no free entries for model vectors.

Table 4.2: Error Constants in the aiNet DLL library.

26 aiNet: The aiNet DLL Library

	The aiNet DLL Library
	Introduction
	Notes about 16 and 32 bit versions of aiNet DLL
	How to use the aiNet DLL library
	aiNet DLL functions overview
	aiNet DLL Library and C (C++) compilers
	aiNet DLL Library and Visual Basic

	The aiNet DLL Library Reference

